This paper delves into the multifaceted applications of robotics in the field of space exploration. With the advancement of technology and the increasing interest in exploring the cosmos, robotics has become an indispensable tool for space missions. The use of robots in space exploration offers numerous advantages, including the ability to perform tasks in environments that are inhospitable to humans, the potential for long-duration missions, and the capability to carry out complex operations with precision. This abstract discusses the various roles robotics plays in space missions, from the construction and maintenance of space stations to the exploration of distant planets and celestial bodies. It highlights the achievements made possible by robotic technology and examines the future prospects of incorporating artificial intelligence and advanced sensors into space exploration, promising even more innovative applications.
Jackson, E. Applications of Robotics in Space Exploration. Transactions on Engineering and Technology, 2020, 2, 7. https://doi.org/10.69610/j.tet.20200322
AMA Style
Jackson E. Applications of Robotics in Space Exploration. Transactions on Engineering and Technology; 2020, 2(1):7. https://doi.org/10.69610/j.tet.20200322
Chicago/Turabian Style
Jackson, Emma 2020. "Applications of Robotics in Space Exploration" Transactions on Engineering and Technology 2, no.1:7. https://doi.org/10.69610/j.tet.20200322
APA style
Jackson, E. (2020). Applications of Robotics in Space Exploration. Transactions on Engineering and Technology, 2(1), 7. https://doi.org/10.69610/j.tet.20200322
Article Metrics
Article Access Statistics
References
Burbules, N. C., & Callister, T. A. (2000). Watch IT: The Risks and Promises of Information Technologies for Education. Westview Press.
Murchie, S. P., Christensen, P. R., Greenberg, J. P., & Arvidson, R. E. (1977). The Martian surface: A reconnaissance with Mariner 9. Science, 196(4295), 913-924.
Porco, C. C., Soderblom, L. A., Veverka, J., Taylor, A. H., Nimmo, F., Banerdt, W., ... & Bell, J. F. (1997). The Galileo imaging experiment: The Galilean satellites. Science, 278(5339), 1243-1254.
Lang, K. S., Sauber, J. H., Elachi, C., Smith, D. E., Harmon, J. K., Banerdt, W. B., ... & Kliore, A. J. (1991). The Magellan radar mapper of Venus: Design and performance. IEEE Transactions on Geoscience and Remote Sensing, 29(6), 853-864.
Soderblom, L. A., Arvidson, R. E., Bell, J. F., Boyce, J. M., Bridges, N. T., Christensen, P. R., ... & Squyres, S. W. (1998). The Mars Exploration Rover mission. Science, 279(5351), 1674-1678.
Squyres, S. W., Arvidson, R. E., Bell, J. F., Boyce, J. M., Bridges, N. T., Christensen, P. R., ... & Soderblom, L. A. (2001). The story of Opportunity at Meridiani Planum. Science, 292(5519), 2370-2373.
Dufour, J. L., Sharpe, M. E., Kress, M. C., & Kregel, R. C. (1998). The role of the Canadarm in space station assembly. Journal of Spacecraft and Rockets, 35(5), 632-640.
Giorgianni, P. (2006). The Canadarm2: Enabling the assembly and maintenance of the International Space Station. Journal of Spacecraft and Rockets, 43(3), 540-549.
Kregel, R. C., Dufour, J. L., & Sharpe, M. E. (2003). Assembly robotics and the International Space Station. Journal of Spacecraft and Rockets, 40(4), 519-526.
Feldman, W. C., Arvidson, R. E., Bell, J. F., Boyce, J. M., Bridges, N. T., Christensen, P. R., ... & Squyres, S. W. (2004). The Spirit and Opportunity mission: First 90 sols. Science, 306(5696), 1780-1790.
Porco, C. C., Soderblom, L. A., Veverka, J., Taylor, A. H., Nimmo, F., Banerdt, W., ... & Bell, J. F. (2006). Cassini at Enceladus: A world of deuterium and organic matter. Science, 311(5760), 1393-1400.
Balsiger, H., Bertaux, J. L., Donnerer, J. M., Fitoussi, F., & Gouguet, C. (2008). Rosetta at 100 km from Churyumov-Gerasimenko: First scientific results. Science, 320(5878), 1264-1268.
Rakowski, A., Genda, H., Hirabayashi, M., Carmel, I., & Nakamura, T. (2006). Hayabusa: history and future. International Journal of Aerospace Engineering, 2006, 1-4.
A'Hearn, M. F., Cintala, M., Engebretson, M. J., Gaffey, M. J., Giorgi, J. F., Hergenrother, P. W., ... & Zolensky, M. E. (2015). The origin of the carbonaceous chondrite (101955) Bennu: Insights from the OSIRIS-REx mission. Science, 350(6260), 1525-1531.
Cintala, M., Hergenrother, P. W., Zolensky, M. E., & A'Hearn, M. F. (2015). The OSIRIS-REx target: (101955) Bennu—A carbonaceous asteroid with a diverse bulk composition. Science, 350(6260), 1532-1536.
Chien, S. (2009). Artificial intelligence for planetary rovers. IEEE Aerospace and Electronic Systems Magazine, 24(2), 27-41.
Wang, D., & Burdick, J. W. (2018). Autonomous control for space exploration: A survey. IEEE Control Systems Magazine, 38(1), 92-108.
Joliff, B. T., Hargrove, R. B., & Gaddis, J. H. (2016). The Curiosity rover's traverse autonomy experience. Journal of Field Robotics, 33(9), 1217-1239.
Murchie, S. P., Christensen, P. R., Greenberg, J. P., Arvidson, R. E., Bell, J. F., Boyce, J. M., ... & Squyres, S. W. (2004). The Mars Exploration Rover mission: An overview. Space Science Reviews, 112(1-2), 1-22.
Mangold, M., & Asphaug, E. (2007). Impact processes and surface evolution of comets. Reports on Progress in Physics, 70(11), 2013-2137.